

Symposium IC-3R Introduction to difficulty to do pain scoring in poultry

> september 2024 – versie 1

Regulatory framework for severe scoring of procedures

- Directive 2010/63/EU: "on the protection of animals used for scientific purposes"
 - Member States shall ensure that all procedures are classified as **'non-recovery'**, **'mild'**, **'moderate'**, **or 'severe'**.
 - New scientific knowledge is available in respect of factors influencing animal welfare as well as the capacity of animals **to sense and express pain, suffering, distress and lasting harm**. It is therefore necessary to improve the welfare of animals used in scientific procedures by raising the minimum standards for their protection in line with the **latest scientific developments**.

→This assessment shall evaluate the (real?) harm inflicted on animals
→How do you address the real harm /severity?

Daily observations of...

 \rightarrow Feasibility of e.g. weighing, individual measurements, individual behaviour observations...

 \rightarrow Extrapolation of signs in single birds to the group?

Daily observations

- Animal observations are challenging
- Welfare concerns increase
- Traditional parameters
- Scoring Systems
- Precision Livestock Farming
 - Set of technology to automatically identify patterns
 - Sound analysis
 - Image Analysis
 - Body sensors

Complex

Individual

Time variations

Dynamic

Traditional parameters

Performance parameters

Body weight Feed intake Water intake Feed conversion ratio

	C500	Broiler Perfor	mance Objecti	ves (Metric) -	As Hatched		
Age (days)	Weight (g)	Daily Gain (g)	Average Daily Gain (g) *	Cum. Feed Conversion **	Daily Feed Intake (g)	Cum. Feed Intake (g)	
0	42						
1	55	13					
2	71	16					
3	90	19					
4	112	22					
5	138	26					
6	168	30					
7	202	34	22.9	0.891		180	
8	240	38	24.8	0.917	40	220	
9	283	43	26.8	0.933	44	264	
10	330	47	28.8	0.952	50	314	
11	382	52	30.9	0.971	57	371	
12	440	58	33.2	0.991	64	435	
13	503	63	35.5	1.012	73	508	
14	570	67	37.7	1.029	80	588	
15	639	69	39.8	1.050	84	672	
16	711	72	41.8	1.072	91	763	
17	786	75	43.8	1.094	98	861	
18	864	78	45.7	1.116	105	966	
19	945	81	47.5	1.138	111	1077	
20	1029	84	49.4	1,160	118	1195	
21	1116	87	51.1	1.182	125	1320	
22	1205	00	53.0	1 202	101	1454	

Physiological and Clinical Measurements

Health and immune system status Changes in hormone levels (corticosterone)

Hock burn score

Score 0: No lesion/s or very small (<1 mm) and superficial.

Score 1: Mild. Area affected does not extend over hock, substantial discoloration, dark papillae, superficial lesion, no ulceration.

Score 2: Severe. Greater surface of hock usually affected. Deeper lesion/s with ulceration, sometimes haemorrhage, scabs of significant size, severely swollen area.

Footpad lesions score

	Score: 0	Score: 1	Score: 2		
	(0 points each for score of 0)	(1 point each for a score of 1)	(2 points each for a score of 2)		
:	No lesions or very small No discoloration or slight on a limited area	 Mild and/or superficial lesions Substantial discoloration on the footpad 	 Severe and significant lesions Ulceration 		
:	No hyperkeratosis or mild Old or no scars	 Dark papillae, no ulceration 	 Dark papillae and ulceration Abscesses and/or swollen feet (bumble foot) 		

Table 1. Scale for scoring gait, adapted from Garner etal. (2002).

Gait score	Description
0	Bird moves fluidly.
1	Bird has an unsteady, wobbling walk. Problem leg cannot be detected.
2	Bird walks for more than 10s. Problem leg can be detected.
3	Bird walks away spontaneously but squats within 10s.
4	Bird only walks away when approached or nudged.
5	Bird cannot walk.

Gait score 2

Gait score 4

Gait score 5

Plumage clealiness

Ordinal rating scales and tagged visual analog scales

Corticosterone

BW decreased with higer levels of CORT

 No correlation between plasma and inscreasing levels of CORT.

increasing CORT dosage

Sound Analysis

Thermal comfort

Development of sound-based poultry health monitoring tool for automated sneeze detection

Lenn Carpentier^a, Erik Vranken^{a,b}, Daniel Berckmans^a, Jan Paeshuyse^a, Tomas Norton^{a,*}

^a Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium
^b Fancom Research, Fancom BV, Wilhelminastraat 17, 5981 XW Panningen, the Netherlands

Using sound technology to automatically detect the short-term feeding behaviours of broiler chickens

A. Aydin^{a,*}, D. Berckmans^b

^a Department of Agricultural Machineries and Technologies Engineering, Faculty of Agriculture, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey ^b Division Measure, Model & Manage Bioresponses, KU Leuven, Kasteelpark Arenberg 30, B-3001 Heverlee, Belgium

IDENTIFYING RALE SOUNDS IN CHICKENS USING AUDIO SIGNALS FOR EARLY DISEASE DETECTION IN POULTRY

Muhammad Rizwan*Brandon T. Carroll*David V. Anderson*Wayne Daley†Simeon Harbert†Douglas F. Britton†Mark W. Jackwood‡

Article

Energy Assessment from Broiler Chicks' Vocalization Might Help Improve Welfare and Production

Erica Pereira¹, Irenilza de Alencar Nääs^{2,*}^(D), André Henrique Ivale², Rodrigo Garófallo Garcia³, Nilsa Duarte da Silva Lima⁴^(D) and Danilo Florentino Pereira⁵^(D)

Vocalization Patterns in Laying Hens - An Analysis of Stress-Induced Audio Responses

Suresh Neethirajan Mooanalytica, Department of Animal Science & Aquaculture, Faculty of Agriculture & Computer Science, Dalhousie University, Halifax, Canada B3H 4R2 Email: sneethir@gmail.com Web: https://mooanalytica.com/

Moura et al., 2008

17 Vocalizations

Systematic Review

pharm

	Description
Distress call	Descending frequency and repetitive, high-energy vocalization calls.
Short peep	Descending frequency, low energy, and short range of duration.
Warbles	Repetitive bow-type elements, and low energy. Cry of somnolence.
Pleasure note	Ascending frequency, low energy and short range of duration.

Validation - broiler vocalization detector

Validation - broiler vocalization detector

Pattern of vocalization

4 Pens / Round
From 1 to 42 days
2 Microphones / Pen
Distress calls
Short peeps
Pleasure notes
Warbles
Others

•

٠

•

- 18 not chicken related
- 4 pleasure notes
- 2 warble notes
- 4 consolidated
- 2 consolidated

10 Final Clusters

Image Analysis - Validation

Early problems Detection

Disease detection

Mortensen et al, 2016

3D Image

Zhuang et al, 2018

Thermal microchip

Star-Oddi logger

Ferm falles for Berral	1.44								12					
Flites def.: 500Eg H	1039 10								10.60			the b	1000	
least fliter alter.	Fatter (76/0/2023 -					ч.,		C Falesa			the below			
	Ser Ser 18 a 16 15 18 0 15						12							
												. 1904		
Dission the day	1100		****	1.00										
BOADWEINERS PROPERTY AT LS								Bater			100	later	e 184	
Isttery energy at st	1	0	:	10	1	0	¢	4	•	Hour / - ++1	Jr.	0	1 -	
Optim i implifie connection	2	0	:	10	:	6	1	1	:	Transfer com	3.0	F		
1/1 (0/18/051 0 1/2 (0/18/3028 0	3	0	-	10	1	0	1	19	4	Social CHH		0		
VI 09/18/3023 0 VI 09/18/3023 0 V/1 09/18/3023 1	4	0	-	10	1	0	1	4	4	Sanatitik HK	• F	0.3		
7/8 00/88/2023 L 5/7 00/88/2023 L	5	ju .	:	10	:	6	:	17	;	For all + HD	<u>.</u>	P 3	l e	
10/1 09/16/2023 1 11/4 09/16/2023 1	6	0	;	10	;	0	:	1	;	Jacobi (1990)	- 2	FG		
	7	0	-	10	4	0	1	21	*	Sou of the HBI	. r	0		
										Энсский Селен		1015.2	5	
								Dates	- 10	ne calculatoride ti	entine Histo	CC Junpi	af maximu: Divide (

Validation of body temperature

- Body temperature: Thermal microchips and Star-Oddi loggers
 - Positive correlation (r=0.699)

Ultra-wide band and accelerometer

Take home message

Traditional parameters and scoring systems are still of great value

- •Subjective
- Labor working
- •Corticosterone feathers and droppings

Technology

- •Sound and image analysis can offer precise and continuously monitoring
- •Body sensors can provide important individual data from broilers
- •Decrease N° of animals used more date gathered
- •Big groups
- •Available data
- •Cost?

